2022-2024 Regional Flexible Funds Allocation Workshop

May 10, 2019
Today’s purpose

• Describe RFFA application and selection process

• Provide information on data resources and project design best practices

• Discuss ODOT project management for non-certified agencies

• Answer questions
RFFA basics

- $39.65 M total available
- $29.74 M: Active Transportation & Complete Streets
- $9.91 M: Regional Freight & Economic Development
- New for 22-24: Can apply for funding in both categories
• Project must be on RTP constrained list
• Applicants limited to Counties, Cities, State agencies
• ROW, Const. project cost minimums:
 – AT/CS: >$3 million project cost
 – Freight: >$1 million project cost
• Project development: $200,000 minimum
Applications due: Friday, June 21, 4:00 p.m.

RFFA@oregonmetro.gov

filesharing link (e.g. Dropbox) OK
Project selection

1. Technical evaluation
2. Risk assessment
3. Public comment
4. CCC/PBOT identification of priority projects
5. TPAC/JPACT discussion, referral of projects to Council
6. Metro Council action on JPACT referral
Technical evaluation

• Review of proposals to evaluate how well they address four policy priority areas (Equity, Safety, Climate, Congestion)

• Evaluation team consists of TPAC citizen representatives, agency and Metro staff
Technical evaluation

- Application responses should include data to illustrate how project addresses policy areas
- RFFA map application is a useful source of data for your proposal
- Use relevant local data as well to support your proposal
Technical evaluation

<table>
<thead>
<tr>
<th>Project name</th>
<th>Priority areas</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Equity</td>
</tr>
<tr>
<td>Main St. Complete Street project</td>
<td></td>
</tr>
</tbody>
</table>

Legend

- Completely meets
- Substantially meets
- Partially meets
- Does not meet
- Worsens conditions
Risk assessment

• Analysis of project development documentation and cost estimate

• Applicants may be asked to clarify or provide additional information

• Kittelson will prepare report, detailing each project’s risk level – high, medium or low
Non-ODOT certified applicants should include project delivery costs in estimates.

Assume your project will be federally-funded; fund exchange not a certainty.

Applicants are responsible for all cost overruns.
Public comment period

- Input on specific projects or on overall outcomes
- Email, letters, petitions, phone calls
- Scheduled for September; 30 days
- Joint JPACT/Council public hearing (19 or 26)
- Final public comment report
Indication of priorities

• Each county, PBOT has the opportunity to indicate which of their submitted projects are their top priorities

• No more than three projects

• Prioritization should consider technical merit, risk assessment, public input
TPAC/JPACT process

- Metro staff will prepare a recommendation for TPAC discussion (Step 1 & 2)
- TPAC to make a recommendation to JPACT
- JPACT to consider, approve a final package of projects
- Council to take action on JPACT approved project package
Active Transportation & Complete Streets
Overall considerations

1. If project is on the regional pedestrian and/or bicycle network(s), review functional classification descriptions in the RTP

2. Design projects for universal access - all ages and abilities

3. Design projects for safety and comfort - increase buffers and level of separation for people walking and bicycling as traffic speeds and/or volumes increase, including intersections

4. Consider surrounding land use, connections to destinations, placemaking

5. Environmental protection and enhancement
Pedestrian elements emphasize separating people walking and in mobility devices from motor vehicle traffic with buffers, increasing the visibility of pedestrians, especially when crossing roadways, and making it easier and more comfortable for people of all ages and abilities to access destinations while walking.

McLoughlin Blvd., Oregon City
Pedestrian & Bicycle Parkway
10’ lanes, 8’ median, bicycle and pedestrian realm combined, parking both sides of the street

High speed high traffic volumes; regional freight connector; regional bus route
Pedestrian design element questions?

A. Pedestrian Project design elements – check all that apply

Design elements emphasize separating pedestrians from motor vehicle traffic with buffers, increasing the visibility of pedestrians, especially when crossing roadways, and making it easier and more comfortable for people walking to access destinations.

For every element checked describe existing conditions and proposed features:

- Add sidewalks or improve vertical delineation of pedestrian right-of-way (i.e. missing curb)
- Add sidewalk width and/or buffer for a total width of 17 feet or more (recommended), 10 feet minimum (over 30 mph, ADT over 6,000). Buffer may be provided by parking, protected bike lane, furnishing zone, street trees/planting strip. Greater width overall is desired in high activity areas, greater buffer separation is desired on streets with higher motor vehicle speeds and or volumes.
- Add sidewalk width and/or buffer for a total width of 10 feet or more (recommended), 8 feet minimum on streets with lower traffic volumes and speeds (ADT less than 6,000 and 25 mph or less). Buffer may be provided by parking, protected bike lane, furnishing zone, street trees/planting strip. Greater width overall is desired in high activity areas, greater buffer separation is desired on streets with higher motor vehicle speeds and or volumes.
- Sidewalk clear zone of 6 feet or more
- Remove obstructions from the primary pedestrian-way or add missing curb ramps
- Add enhanced pedestrian crossing(s) at appropriate locations
- Re-open closed crosswalks
- Add crosswalk at transit stop
- Raised pedestrian refuge median or raised crossing, required if project is on a roadway with 4 or more lanes
- Reduced pedestrian crossing distance
- Narrowed travel lanes (reduces pedestrian crossing distance)
- Reduced corner radii (e.g. truck apron) (enhances pedestrian safety)
- Curb extensions and/or in-lane transit boarding
- Rectangular Rapid Flashing Beacon (RRFB) or pedestrian signal
- Lighting, especially at crosswalks – pedestrian scale (10-15 feet), preferably poised over sidewalk
- Dark skies compliant lighting
- Add countdown heads at signals
- Shorten signal cycle lengths of 90 seconds or less – pedestrian friendly signal timing, lead pedestrian intervals
- Access management: minimize number and spacing of driveways
- Arterial traffic calming: Textured intersections, gateway treatments, raised medians, road diets, roundabouts
- Wayfinding
- Pedestrian priority street treatment (e.g. woonerf) on very low traffic/low volume street
- Other pedestrian priority design elements

C. Other Complete Street Features

For every element checked describe existing conditions and proposed features:

- Transit priority treatments (e.g. queue jumps, transit signal priority)
- Move transit stop to far side of signal
- Benches
- Transit stop amenities or bus stop pads
- Gateway feature
- Street trees and/or landscaping
- Stormwater treatments
- Intelligent Transportation System (ITS) elements (i.e. signal timing and speed detection)
- Wayfinding
- Other complete streets design elements
Bicycle and other micro-mobility design elements emphasize separating bicycle and motor vehicle traffic, increasing visibility of bicyclists, and making it easier and more comfortable for people traveling by bicycle to access routes and destinations.

Mulnomah Blvd. Portland separated bikeway,
Pedestrian Parkway, Regional Bikeway
Frequent bus route

© Jonathan Maus/BikePortland
Bicycle design element questions?

B. Bicycle Project design elements

Design elements emphasize separating bicycle and motor vehicle traffic, increasing visibility of bicyclists, and making it easier and more comfortable for people traveling by bicycle to access routes and destinations.

For every element checked describe existing conditions and proposed features:

☑ On streets with traffic speeds and volumes over 30 mph, ADT over 6,000: Protected bicycle lane with vertical separation, minimum width 6 feet with minimum 2 foot buffer (refer to table below for recommended widths based on projected used)

☑ On streets with traffic speeds and volumes over 30 mph and ADT 3,000 to 6,000: Buffered bicycle lane, at least 6 foot bike lane with minimum 2 foot buffer (refer to table below for recommended widths based on projected used)

☑ Bicycle boulevard treatment (markings, slowed traffic speeds, wayfinding etc.) where ADT is less than 3,000 per day and speeds are equal to or less than 20 mph

☑ Separated multi-use path parallel to roadway with at least 5 foot separation from roadway (refer to item D below)

☑ Bike priority treatments at intersections and crossings, including advance stop lines, bike boxes, bicycle priority signals, high-intensity activated crosswalk (HAWK) signals, user-activated signals

☑ Protected intersection treatments

☑ Access management: minimize number and spacing of driveways

☑ Arterial traffic calming: Textured intersections, gateway treatments, raised medians, road diets, roundabouts

☑ Raised pedestrian refuge median or raised crossing with bicycle crossing treatments, required if project is on a roadway with 4 or more lanes

☑ Lighting at intersections

☑ Dark skies compliant lighting

☑ Other bicycle priority design elements

C. Other Complete Street Features

For every element checked describe existing conditions and proposed features:

☑ Transit priority treatments (e.g. queue jumps, transit signal priority)

☑ Move transit stop to far side of signal

☑ Benches

☑ Transit stop amenities or bus stop pads

☑ Gateway feature

☑ Street trees and/or landscaping

☑ Stormwater treatments

☑ Intelligent Transportation System (ITS) elements (i.e. signal timing and speed detection)

☑ Wayfinding

☑ Other complete streets design elements

Use the following table to help determine the suitable bikeway widths:

<table>
<thead>
<tr>
<th>Peak Hour One-way User Volume</th>
<th>Preferred Operating Space Width</th>
<th>Minimum Operating Space Width</th>
</tr>
</thead>
<tbody>
<tr>
<td><150</td>
<td>6.5 feet</td>
<td>5 feet</td>
</tr>
<tr>
<td>150-750</td>
<td>8 feet</td>
<td>6.5 feet</td>
</tr>
<tr>
<td>>750</td>
<td>10 feet</td>
<td>8 feet</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Peak Hour Two-way User Volume</th>
<th>Preferred Operating Space Width</th>
<th>Minimum Operating Space Width</th>
</tr>
</thead>
<tbody>
<tr>
<td><150</td>
<td>11 feet</td>
<td>8 feet</td>
</tr>
<tr>
<td>150-350</td>
<td>12 feet</td>
<td>10 feet</td>
</tr>
<tr>
<td>>350</td>
<td>16 feet</td>
<td>12 feet</td>
</tr>
</tbody>
</table>

Source: Metro
Note: Recommend widths do not include 2’ minimum buffer, or shy distance from curb, if applicable.
Regional trail design elements emphasize safe and comfortable travel, with enhanced roadway crossing and enough room for people walking and bicycling to pass each other safely and comfortably.

Trolley Trail – Multi-use Path, Clackamas County

Regional trail width is determined by context, use and environmental constraints. Regional trails are typically 10-12’ with a 1-2’ shoulder.
Regional trail/MUP design element questions?

Use the following table to help determine the suitable trail/multi-use path width:

<table>
<thead>
<tr>
<th>One-way pedestrian volume / hour</th>
<th>less than 10</th>
<th>25</th>
<th>50</th>
<th>75</th>
<th>100</th>
<th>125</th>
<th>150</th>
<th>175</th>
<th>200 or more</th>
</tr>
</thead>
<tbody>
<tr>
<td>less than 10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>75</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>125</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>150</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>175</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>200 or more</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Source: Metro
Note: In considering other types of users, count slower-moving users as pedestrians and faster ones as bicyclists.
Need help?

Contact Lake McTighe at:
Lake.McTighe@oregonmetro.gov
or
503.797.1660
ETC resources

- RFFA Workshop
- May 10, 2019
What is Enhanced Transit Concept (ETC)?

Transit capital and operating partnerships:

- Increase capacity, speed and reliability where needed
- Transit priority improvements that are:
 - relatively low-cost to construct,
 - context-sensitive, and
 - able to be deployed more quickly
• Localized transit improvements can have regional impacts

• Small changes in bus priority have major impacts—every little bit helps
“Big Three” – SW Madison, Burnside and NW Everett
RTP Transit Policy 4

Make transit more convenient by expanding high capacity transit and improving transit speed and reliability through the regional enhanced transit concept.

<table>
<thead>
<tr>
<th>Regional level improvements</th>
<th>Hotspot improvements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bus on shoulder</td>
<td>Dedicated bus lane</td>
</tr>
<tr>
<td>Transit signal priority and signal improvements</td>
<td>Business access and transit (BAT) lane</td>
</tr>
<tr>
<td>Headway management</td>
<td>Intersection queue jump/right turn except bus lane</td>
</tr>
<tr>
<td>Corridor wide improvements</td>
<td>Transit-only aperture</td>
</tr>
<tr>
<td>Level boarding</td>
<td>Pro-time (peak period only) transit lane</td>
</tr>
<tr>
<td>All door boarding</td>
<td>Multi-modal interactions</td>
</tr>
<tr>
<td>Bus stop consolidation</td>
<td>Curb extension at stops/stations</td>
</tr>
<tr>
<td>Rolling stock modification</td>
<td>Far-side bus stop placement</td>
</tr>
<tr>
<td>Transit signal priority and signal improvements</td>
<td>Street design traffic flow modifications</td>
</tr>
</tbody>
</table>

ETC Toolbox
Dedicated transit lane

Local Example
Southbound 5th Avenue approaching I-405 (Portland, OR)
Business access and transit (BAT) lanes and queue jump
BAT lanes or shared lanes

Burnside: EB BAT lane
W Burnside across the Burnside Bridge
• Built in two phases
• Phase 1 will improve bus travel time by 40–50%

BAT lanes or shared lanes
Red paint treatment
Pro-time (peak period only) transit lane
Bus on shoulder
Near level and/or all-door boarding
Need help?

Contact Jamie Snook at:
jamie.snook@oregonmetro.gov
or
503.797.1751
Transportation System Management and Operations

Caleb Winter, TSMO Program Manager,
Friday, May 10, 2019
A conversation with your engineers

- Smarts
- Assets
- Systems
- What is TSMO?
Smarts: Arterial Performance Measures (2013)

Smart phasing

• Utilize sensors

• Utilize communication to the public
 – TripCheck Local Entry Tool

• Signal timing is adjusted

• System is tested (Other phase)
Assets
Assets
Systems: bringing data from the field to operators and planners

Communications Plan for the Portland Metro Region

prepared for TransPort

prepared by DKS
December 2016
Bike Counts in Bike-Ped Portal

Source: http://bp.its.pdx.edu/
ODOT Active Traffic Management

ODOT RealTime on Hwy 217
10% travel time reliability improvement
Total crashes down 21%
Throughput increase 5%
Curve warning system results:
• 50% average reduction in crashes
• 80% averaged reduction in crash severity

Source: 2016 Portland Region Traffic Performance Report and OR 217 ATM Summary (ODOT)
What is TSMO?

Transportation System Management and Operations

TSMO = Planning for Operations

TSMO gets decision-making focused on regional goals, coordinates implementation and integrates efforts between operators.
2010-2020 TSMO Plan

TSMO Vision Statement:
The Portland metropolitan region will collaboratively and proactively manage its multimodal transportation system to ensure safe, reliable, efficient, and equitable mobility for people and goods.
TSMO projects

Central Traffic Signal System update
Clackamas Freight ITS
TripCheck Connected Vehicle and TripCheck Local Entry
Clackamas and Beaverton adaptive signals
Dynamic message signs (Gresham arterials)
Columbia Boulevard ITS (Port and PBOT)
RTP Projects

RTP Investment Category

<table>
<thead>
<tr>
<th>Transportation System Management</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>County</th>
<th>Nominator Agency</th>
<th>Primary Facility Owner</th>
<th>RTP ID</th>
<th>Project Name</th>
<th>Start Location</th>
<th>End Location</th>
<th>Description</th>
<th>Estimated Cost (dollars)</th>
<th>Time Initial</th>
<th>Phasing</th>
<th>Funding Source Funded</th>
<th>Source of Cost Estimate</th>
<th>Safety Benefit</th>
<th>Project Benefit</th>
<th>Project Benefit</th>
<th>RTP Equity Focus Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multnomah County</td>
<td>Portland</td>
<td>Portland</td>
<td>10245</td>
<td>Central City Traffic System Management</td>
<td>Central City</td>
<td>Central City</td>
<td>Improve traffic system performance with complete all-phase merging and pedestrian safety improvement</td>
<td>$3,140,152</td>
<td>2018-0246</td>
<td>Planning-level estimate</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Multnomah County</td>
<td>Portland</td>
<td>Portland</td>
<td>10261</td>
<td>Sandy Blvd PFS</td>
<td>NE Coach Jr</td>
<td>NE Coach Jr</td>
<td>PFS improvements at intersection between Sandy Blvd and Coach Jr including signalization, closed circuit TV cameras, and pedestrian signal improvements</td>
<td>$1,400,000</td>
<td>2018-0237</td>
<td>Conceptual cost estimate</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Multnomah County</td>
<td>Portland</td>
<td>Portland</td>
<td>10266</td>
<td>North Portland PFS Improvements</td>
<td>NE 32nd Ave</td>
<td>NW 32nd Ave</td>
<td>PFS improvements at intersection between North Portland and NE 32nd Ave</td>
<td>$1,400,000</td>
<td>2018-0236</td>
<td>Conceptual cost estimate</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Multnomah County</td>
<td>Portland</td>
<td>Portland</td>
<td>10233</td>
<td>Airport Way PFS</td>
<td>I-505</td>
<td>NE 5th Ave</td>
<td>PFS improvements at intersection between Airport Way and I-505</td>
<td>$1,500,000</td>
<td>2018-0235</td>
<td>Conceptual cost estimate</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Multnomah County</td>
<td>Portland</td>
<td>Portland</td>
<td>10254</td>
<td>Central City Traffic System Management</td>
<td>Central City</td>
<td>Central City</td>
<td>Implement Central City traffic system improvements to pedestrian safety</td>
<td>$1,500,000</td>
<td>2018-0234</td>
<td>Planning-level estimate</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Multnomah County</td>
<td>Portland</td>
<td>Portland</td>
<td>10249</td>
<td>Going to the River</td>
<td>SW Industrial Ave</td>
<td>SW Industrial Ave</td>
<td>ITS improvements at intersection between Going to the River and SW Industrial Ave</td>
<td>$1,400,000</td>
<td>2018-0233</td>
<td>Conceptual cost estimate</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Multnomah County</td>
<td>Portland</td>
<td>Portland</td>
<td>10274</td>
<td>Going to the River</td>
<td>SW Industrial Ave</td>
<td>SW Industrial Ave</td>
<td>ITS improvements at intersection between Going to the River and SW Industrial Ave</td>
<td>$1,400,000</td>
<td>2018-0232</td>
<td>Conceptual cost estimate</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Multnomah County</td>
<td>Portland</td>
<td>Portland</td>
<td>10298</td>
<td>120th Ave Connector TS Improvements</td>
<td>NE Airport Way</td>
<td>SE Russell Blvd</td>
<td>Implement a traffic system that improves safety and efficiency of traffic signal system, including complete all-phase merging and pedestrian safety improvements</td>
<td>$3,000,000</td>
<td>2018-0231</td>
<td>Conceptual cost estimate</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Multnomah County</td>
<td>Portland</td>
<td>Portland</td>
<td>11368</td>
<td>Johnson Creek/Eastmore Ave ITI Improvements</td>
<td>Johnson Creek</td>
<td>Eastmore Ave</td>
<td>Implement proven safety countermeasures by adding intelligent transportation system improvements at the intersection of Johnson Creek Boulevard and Eastmore Avenue</td>
<td>$2,100,000</td>
<td>2018-0230</td>
<td>Conceptual cost estimate</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Clackamas County</td>
<td>Clackamas County</td>
<td>Clackamas County</td>
<td>11752</td>
<td>Sandydale Road Adaptive Signal Control Phase II</td>
<td>Sandydale Road</td>
<td>Sandydale Road</td>
<td>Implement adaptive signal control at major intersections between 122nd Ave and improve non-adjacent traffic on Sandydale Road</td>
<td>$2,100,000</td>
<td>2018-0229</td>
<td>Conceptual cost estimate</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Clackamas County</td>
<td>Clackamas County</td>
<td>Clackamas County</td>
<td>11756</td>
<td>Johnson Creek/Eastmore Ave ITI Improvements</td>
<td>Johnson Creek</td>
<td>Eastmore Ave</td>
<td>Implement proven safety countermeasures by adding intelligent transportation system improvements at major intersections of Johnson Creek Boulevard and Eastmore Avenue</td>
<td>$2,100,000</td>
<td>2018-0228</td>
<td>Conceptual cost estimate</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Clackamas County</td>
<td>Lake Oswego</td>
<td>Lake Oswego</td>
<td>11934</td>
<td>City-wul Traffic Signal ITI Improvements</td>
<td>Clayside</td>
<td>NA</td>
<td>Implement proven traffic signal improvements and improve non-adjacent traffic on Clayside Road</td>
<td>$2,100,000</td>
<td>2018-0227</td>
<td>Conceptual cost estimate</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Clackamas County</td>
<td>Lake Oswego</td>
<td>Lake Oswego</td>
<td>11934</td>
<td>City-wul Traffic Signal ITI Improvements</td>
<td>Clayside</td>
<td>NA</td>
<td>Implement proven traffic signal improvements and improve non-adjacent traffic on Clayside Road</td>
<td>$2,100,000</td>
<td>2018-0226</td>
<td>Conceptual cost estimate</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Clackamas County</td>
<td>Lake Oswego</td>
<td>Lake Oswego</td>
<td>11934</td>
<td>City-wul Traffic Signal ITI Improvements</td>
<td>Clayside</td>
<td>NA</td>
<td>Implement proven traffic signal improvements and improve non-adjacent traffic on Clayside Road</td>
<td>$2,100,000</td>
<td>2018-0225</td>
<td>Conceptual cost estimate</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Clackamas County</td>
<td>Lake Oswego</td>
<td>Lake Oswego</td>
<td>11934</td>
<td>City-wul Traffic Signal ITI Improvements</td>
<td>Clayside</td>
<td>NA</td>
<td>Implement proven traffic signal improvements and improve non-adjacent traffic on Clayside Road</td>
<td>$2,100,000</td>
<td>2018-0224</td>
<td>Conceptual cost estimate</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Clackamas County</td>
<td>Lake Oswego</td>
<td>Lake Oswego</td>
<td>11934</td>
<td>City-wul Traffic Signal ITI Improvements</td>
<td>Clayside</td>
<td>NA</td>
<td>Implement proven traffic signal improvements and improve non-adjacent traffic on Clayside Road</td>
<td>$2,100,000</td>
<td>2018-0223</td>
<td>Conceptual cost estimate</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Clackamas County</td>
<td>Lake Oswego</td>
<td>Lake Oswego</td>
<td>11934</td>
<td>City-wul Traffic Signal ITI Improvements</td>
<td>Clayside</td>
<td>NA</td>
<td>Implement proven traffic signal improvements and improve non-adjacent traffic on Clayside Road</td>
<td>$2,100,000</td>
<td>2018-0222</td>
<td>Conceptual cost estimate</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td></td>
</tr>
</tbody>
</table>
New concepts

I-84 Multimodal ICM report

https://www.oregonmetro.gov/multimodal-integrated-corridor-management
Thanks!
Project Management
Project delivery issues

• Unrealistic project schedules
• Multiple project amendments
• New obligation target system
 – Penalties
 – Rewards
New management tools

• Certification User Group
• Pre-award risk assessment
• Project tracking and reporting
• Proactive programming
• Obligation target exceptions process
RFFA risk assessment

- Scope, schedule, budget review
- Identify risks, request more information
- Applicant response
- Risk summary
- Application adjustments and conditions
Applications due:
Friday, June 21, 4:00 p.m.

RFFA@oregonmetro.gov

filesharing link (e.g. Dropbox) OK