HAHN AND ASSOCIATES, INC.

ENVIRONMENTAL CONSULTANTS

November 19, 2001

Ms. April Olbrich METRO 600 NE Grand Avenue Portland, Oregon 97232

HAI File No. 5659

SUBJECT: Revised Phase II Environmental Site Assessment Activities; 7.29-Acre Property, NW Civic Drive, Gresham, Oregon

Dear Ms. Olbrich:

1. Introduction

At your request, Hahn and Associates, Inc. (HAI) has completed soil assessment activities at the above-referenced site (Figure 1). The sampling activities were conducted to investigate soils for the presence of hazardous materials beneath two ash piles formerly located on the subject site. Other activities included inspecting the ground surface for evidence of spillage or a release where a stockpile of miscellaneous debris was previously observed on the subject property. Former locations of the two ash piles, and the former location of the miscellaneous debris pile are depicted in Figure 2.

2. Background

In November 2001, HAI prepared a Phase I ESA¹ for the subject property which revealed evidence of recognized environmental conditions in connection with the property:

- 1) Two ash piles were located on the subject property. Burnt materials including oil filters, auto parts, and aerosol cans were noted in or around the ash piles. It appeared that the ash and other materials had been brought to this location as opposed to burnt on site
- 2) A stockpile of miscellaneous wood, furniture, and consumer sized containers were also noted on the subject property. Several areas of trash and debris, including clothing, rusted automotive parts, and paper trash were also noted.

The two ash piles were removed from the site by Accord Construction on November 6, 2001, and the miscellaneous debris pile was removed during the following week. The objectives of the Phase II ESA are to determine whether impacts to soils at the location of the two former ash piles exist, and to visually evaluate the former area of the wood debris pile for evidence of a release of regulated materials.

¹ Hahn and Associates, Inc. (2001). A Phase I Environmental Site Assessment, 7.29-Acre Property, NW Civic Drive, Gresham, Oregon (HAI Project 5256). November 5, 2001.

3. Field Activities

On November 6, 2001, HAI was present at the site to collect soil samples and complete site investigative activities. On November 19, 2001, HAI returned to the site to complete site investigative activities. Soil sampling was completed in surficial soils at the former location of the two ash piles. Soil samples were collected using a clean, stainless steel hand trowel.

No visual or olfactory evidence of petroleum contamination was observed in the surficial soils beneath either of the two former ash piles. Further, the presence of sheen was not detected when placing clean tap water in a container lid and introducing approximately 2 grams of disaggregated soil to the water.

HAI collected one soil sample from soils approximately 3 to 6 inches below ground surface (bgs) at each of the two former ash pile locations. Upon collection, each soil sample was immediately placed in a 4-ounce sample jar and capped with a Teflon-lined lid. The sample jars were then labeled and transferred to a chilled container for shipment to the analytical laboratory. Standard sampling protocols, including the use of chain-of-custody documentation, were followed for all sampling procedures.

The stockpile of wood and furniture was removed from the subject property at the time of HAI's second site visit on November 19, 2001. The ground surface in the former area of stockpiled debris was inspected for evidence of spillage or a release of regulated material. No evidence of spillage or a release was noted. Due to the inert nature of the former debris pile (wood and furniture), no soil sampling was conducted.

4. Analytical Tests

The soil samples were shipped with chain-of-custody documentation in sealed and chilled containers to Environmental Services Laboratory, Inc. of Tualatin, Oregon.

Soil samples were analyzed for a hydrocarbon identification (HCID) of total petroleum hydrocarbons (TPH) by Northwest Method TPH-HCID and for Priority Pollutant metals by U.S. Environmental Protection Agency (EPA) Method 6010B/7471A.

All laboratory results are summarized on Table 1. The laboratory reports and chain-of-custody documentation for the soil samples are included in Attachment A.

5. Results and Discussion

As summarized on Table 1, gasoline, diesel and oil-range petroleum hydrocarbons were not detected above method detection limits in soils beneath the former ash piles. With regard to metals, only arsenic, a naturally occurring metal, was identified at a concentration greater than EPA Region 9 Preliminary Remediation Goals (PRGs) established for the protection of residential soil. Although greater than Region 9 PRGs, the identified concentration of arsenic (3.33 and 3.78 ppm), are within the range of concentrations (1 to 10 ppm) that are considered typical for naturally-occurring

background levels in northwestern soils. As such, the identified arsenic concentrations do not appear to be attributable to a release from the ash piles.

No evidence of spillage or a release was noted on the ground surface in the vicinity of the former stockpile of wood and furniture when the area was re-inspected on the subject site.

6. Conclusions and Recommendations

Based on the results of the analytical testing and based on a lack of field evidence for petroleum hydrocarbons or other contaminants from field screening methodologies, it does not appear that soils beneath the former ash pile locations have been adversely impacted. Further, due to the inert nature of the former wood and debris pile and the lack of evidence of a release, it does not appear likely that soil impacts exist at this location. Based on the preceding, no actions are necessary with respect to soils at the site, and additional Phase II ESA activities are not recommended at this time.

7. Limitations

The samples discussed in this report were collected, analyzed, and interpreted following the standards of care, skill, and diligence ordinarily provided by a professional in the performance of similar services as of the time the services were performed. This report and the conclusions and/or recommendations contained in it are based solely upon physical sampling and analytical activities that were conducted. The data presented in this report document only the concentrations of the target analytes in the particular sample and not the property as a whole.

If there are any comments or questions, please contact the undersigned. Thank you for the opportunity to be of service.

Respectfully.

Derek C. Sandoz

Environmental Scientist

attachments (figures, table, laboratory reports)

Table 1 - Summary of Analytical Results for Soil Samples
Phase II Environmental Site Assessment Activities
NW Givic Drive
Gresham Oregon

6	MANAGE COLUMN	I (a)
Project No. 5659	72.5	23 NO
et No	5	1
Proje		-
	8 8	
	Theilin ND>1.00	
		100
	1 88	8
	Silver ND>1.00	
	CONTRACTOR OF THE PROPERTY OF THE PROPERTY OF	888
	Section D>1.00	8
	P É	
	Kelt Soleniu 15.5 ND-1.00	1880
		991
		(F2)
	13. dd	9
	[F]	77.
	4.601	
	detho	90
	P P P P	2.9
	By Re	200
	Amaly minum 18.1	210
	l lig	10.5 20.5 20.5 20.5 20.5 20.5 20.5 20.5 2
		300
	00.00	37.
	Cadmi ND>1.00	0200
	i i	
	1.00 1.00	150
	Pê ê	2000
	1.00 BEYNE 1.78 ND>1.00 1.38 ND>1.00	33
	V. Co. Co.	
		\$300 \$300 \$300 \$300 \$300 \$300 \$300 \$300
	1.16	55.5 55.5 55.5
	1.16	3T;
	nerico	
	Po in	3.
	Meth 471A 133	7
	EPA NI D>0.1	
	-01 N	SEX:
	Sample Date 6-Nov-01	- , 8T
	S -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9	Leve
	nblar Dom	renc
	ample nmber 001	Ref
	9 2.2	
Ħ		
igar.		
residam Orego	Area Shie #1	
1001	A Paragraphic Para	() ()
-		

	A		2.0	_	_	
	1000000		ීම	ı		82
	200000	200	SH.	1		82
	10000000	20	8	ł		150
	302.00	23	8	1		**
	2000	333	О	١		100
	KKOKA:	553	į.	83	83	13.5
	3350000	3000	8	ň	÷	252
	200000	4	P	ND>133	ND>132	15
			XXX	z	z	×
	- E. C.	Ų.	325	Н		27
	6 F	3	a	ł		80
	3 5	ш	ч	ı		235
	538	E				m
	S tu	Ŋ	8	l۰	00	Εŭ
		F	=	ND>26.7	ND>26.3	77.02 030.0
1		et	3	얏	꼇	1878
	TO THE REAL	Σ	ď.	ΙÄ	Ä	327
		3	(())	z	Z	2023
	********	Z	355			200
	ESCUENCE :	220	0	ŀ		220
	000000000000000000000000000000000000000	50%	×			33
	201241016	250	8			35
Į	20172004	232	4	4	œ	Ž.
Į		***	96	Ġ.	ŭ	300
į	0.00000	3300	4	Ϋ́	ND>65.8	100
ı	92.000	ű	щ.	ΙÄ	Ä	800
ı	2000	3	3	N	z	20
ı						
	XXXXXXXX	200	1			333
			Ser	1	1	
	ple e		GO CO	-01	-01	
	mple sate		n Gestern	[ov-01	ov-01	
	Sample Date		AMPARAGE	-Nov-01	Nov-01	1010
	Sample Date		as addings one	6-Nov-01	6-Nov-01	Toyolo !
	Sample Date		angis dilingga offi	6-Nov-01	6-Nov-01	- t along 1 a
	Sample Date		Sensite and sense of	6-Nov-01	6-Nov-01	mre Torole 1
-	Sample Date		nakanis din Gebera	6-Nov-01	6-Nov-01	rrence Torolo !
	ole Sample Date		Hillian bagis diterminate			eference Lorole 1
	mple Sample nber Date		en			Reference Lorels 2
	Sample Sample unber		an han han bankan dan sekan dan	001 6-Nov-01	002 6-Nov-01	Reference Lengls 1
	Sample Sample Number Date		na anama a a sa anama ana			Reference Lengle 1
	Sample Sample Number Date					Reference Lorele 2
	Sample Sample Number: Date		e en			Reference Lenels 2
	Sample Sample Number: Date		HO BRIDGERSHING OF SECTIONS OF SECTION			Reference Levels .
	Sample Sample Number Date		andon in morning a parade de des			Reference Lengle 2
	Sample Sample Number Date		mannan Bungan kanahasi penganan sebagai			Reference Longle 2
	a Sample Semple Number Date		en den eta			Reference Lenels 2
	rrea Sample Sample Number Date		establish in bushing his second	001	002	Reference Longle !
	Area Sample Samjie Date		ese estasticati in markinin aperin desemble	001	002	Reference Longle !
	Area Sample Sample Number		i posta esta esta esta de la para esta esta esta esta esta esta esta est	001	002	Reference Levels -
	Area Sample Sample Date		alanda eta benegarian en	001	002	Reference Levels 2
	Area Sample Sample Number: Date		es es es escondistado en apara en estado	001	002	Reference Torols 2
	Arrea Sample Sample Date			001		Reference Torols 2

~ Not Analyzed Boid and shaded ≈ Detected above Reference Level Note:

EPA = U.S. Environmental Protection Agency mg/kg = milligram/kilogram

ND = not detected above detection limit indicated ppm = parts per million PRGs = Preliminary Romediation Goals

1 = Sample number prefix; 5659-011106-2 = Reference Level based on U.S. EPA Region 9 PRGs - Residential Soil (November 2009)

Note: Base Map from the Camas Washington/Oregon USGS 7.5 Minute Quadrangle, 1994 Contour Interval: 10 Feet

HAI Project No. 5659	HAHN AND ASSOCIATES INCORPORATED	Location and Regulatory List Sites Map	FIGURE
November 2001	ENVIRONMENTAL MANAGEMENT 434 NW SIXTH AVENUE, SUITE 203 PORTLAND, OREGON 97209 503/796-0717	7.29-Acre Property Vicinity of NW Civic Drive and NW Burnside Road Gresham, Oregon	$\lfloor 1 \rfloor$

Hi April,

I apologize for any confusion. Here is where we are.

Arsenic was detected at 3.33 parts per million (ppm). However, arsenic is a naturally ocurring metal across the northwest in ranges from 1 to 12 parts per million, so the concentration of arsenic detected (3.33 ppm) is within the range of concentrations that are considered "natural" (all of this will be further explained in the report which I will be faxing over later this PM)

Gasoline and diesel were Not Detected at the subject site.

The report will be faxed to you today before 5:00 PM.

Thanks,

Derek

```
>Derrick & Matt, I didn't get a response yet on my questions on the
>results; the arsenic (above EPA standards, but doesn't matter?) &
>the oil, gasoline, diesel (below?). I think we need the letter
>report on Tuesday.
>>>> Matthew Mudge <mmudge@hahnasoc.com> 11/09/01 05:27PM >>>
>April.
>Please pardon me for the rushed data entry, good old Friday afternoon.
>Attached is a table that should be a little better.
>Have a great weekend!
>-Matt
>>I know we were doing metals, which is what I think the table shows;
>>but I wasn't sure if the table shows the HCID & Dx (which I guess I
>>thought related to gasoline products---- nothing like showing one's
>>ignorance!!) I did understand that the pesticides were dropped. So
>>the table says we are below EPA levels & don't need to worry about
>>anything??
>>Tuesday is soon enough to revise the end on the table. Thanks.
>>Have a good weekend. I'll be here for a bit, so if you want to
>>email back today fine, if not, Monday/Tuesday is fine.
>>
>>>> Matthew Mudge <mmudge@hahnasoc.com> 11/09/01 04:47PM >>>
>>Yes, sorry about that, I must not have updated the project address;
>>however the data is for the site in Gresham.
>>A revised table will be included in the report, unless you need one sooner?
>>Please let me know,
>>Thanks again,
```

```
>>-Matt
>>
>>>Hi Matt. Is the label on the table in error? it says NW Natural Gas
>>>facility...
>>>
>>>>> Matthew Mudge <mmudge@hahnasoc.com> 11/09/01 04:36PM >>>
>>>April,
>>>Attached are the soil data results from Tuesday's sampling in
>>>Gresham. Derek is out of the office today. Please feel free to
>>>contact me with any questions.
>>>Thanks,
>>>-Matt
>>>--
>>>
>>>Matthew S. Mudge / mmudge@hahnasoc.com
>>>Hahn and Associates, Inc.
>>>434 NW 6th Avenue, Suite 203
>>>Portland, Oregon 97209-3600
>>>
>>>Phone: 503/796-0717 / Facsimile: 503/227-2209
>>
>>
>>--
>>
>>Matthew S. Mudge / mmudge@hahnasoc.com
>>Hahn and Associates, Inc.
>>434 NW 6th Avenue, Suite 203
>>Portland, Oregon 97209-3600
>>Phone: 503/796-0717 / Facsimile: 503/227-2209
>
>Matthew S. Mudge / mmudge@hahnasoc.com
>Hahn and Associates, Inc.
>434 NW 6th Avenue, Suite 203
>Portland, Oregon 97209-3600
>Phone: 503/796-0717 / Facsimile: 503/227-2209
Derek C. Sandoz
Hahn and Associates, Inc.
```

Derek C. Sandoz Hahn and Associates, Inc. 434 NW 6th Avenue, Suite 203 Portland, Oregon 97209-3600

Phone: 503/796-0717 FAX: 503/227-2209

E-Mail: dsandoz@hahnasoc.com

APPENDIX A

Laboratory Reports and Chain of Custody Documentation

17400 SW Upper Boones Ferry Road, Suite 270 • Portland, OR 97224 • (503) 670-8520

November 13, 2001

Mr. Matt Mudge Hahn and Associates 434 NW Sixth Avenue Suite 203 Portland, OR 97209 TEL: (503) 796-0717 FAX (503) 227-2209

RE: 5659-011106/Metro-Civic Drive

Order No.: 0111038

Dear Mr. Matt Mudge,

Environmental Services Laboratory received 2 samples on 11/7/01 for the analyses presented in the following report.

The Samples were analyzed for the following tests:

HCID Soil (EPA 8015) ICP Metals (EPA 6010B)

Mercury (EPA 7471A)

PERCENT MOISTURE (SM 2540)

There were no analytical problems encountered, and all data met laboratory QC criteria, unless noted in a Case Narrative. Results apply only to the samples analyzed. Reproduction of this report is permitted only in its entirety, without the written approval of the Laboratory. The following checked data sections are included in this report, and numbered to indicate total pages within each report section.

If you have any questions regarding these test results, please feel free to call.

Sincerely,

Leslie Rush

Lie (Zus

Project Manager

Technical Review

Date: 13-Nov-01

CLIENT:

Hahn and Associates

Lab Order:

0111038

Project:

5659-011106/Metro-Civic Drive

Lab ID:

0111038-01A

Client Sample ID: 001

Tag Number:

Collection Date: 11/6/01

Matrix: SOIL

Analyses	Result	Limit	Qual	Units	DF	Date Analyzed
MERCURY		EPA 7471A				Analyst: mal
Mercury	ND	0.133		mg/Kg-dry	1	11/7/01
ICP METALS		EPA 6010B				Analyst: mal
Antimony	1.14	1.00		mg/Kg	1	11/8/01
Arsenic	3.78	1.00	7 -	mg/Kg	1	11/8/01
Beryllium	ND	1.00		mg/Kg	1	11/8/01
Cadmium	ND	1.00		mg/Kg	1	11/8/01
Chromium	18.1	1.00		mg/Kg	1	11/8/01
Copper	14.3	1.00		mg/Kg	1	11/8/01
Lead	13.0	1:00		mg/Kg	1	11/8/01
Nickel	15.5	1.00		mg/Kg	1	11/8/01
Selenium	ND	1.00		mg/Kg	1	11/8/01
Silver	ND	1.00		mg/Kg	1	11/8/01
Thallium	ND	1.00		mg/Kg	1	11/8/01
Zinc	72.5	1.00		mg/Kg	1	11/8/01
ICID SOIL		EPA 8015				Analyst: tmh
Oil	ND	133		mg/Kg	1	11/6/01
Gasoline	ND	26.7		mg/Kg	1	11/6/01
Diesel	NĎ	66.7		mg/Kg	1	11/6/01
Surr: O-Terphenyl	77.2	50-150		%REC	1	11/6/01
PERCENT MOISTURE		SM 2540				Analyst: smc
% Moisture	25.0	0		wt%	1	11/6/01

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

* - Value exceeds Maximum Contaminant Level

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range -

Date: 13-Nov-01

CLIENT:

Hahn and Associates

Lab Order:

0111038

Project:

5659-011106/Metro-Civic Drive

Lab ID:

0111038-02A

Client Sample ID: 002

Tag Number:

Collection Date: 11/6/01

Matrix: SOIL

Analyses	Result	Limit Qu	ial Units	DF	Date Analyzed
MERCURY		EPA 7471A			Analyst: mal
Mercury	ND	0.132	mg/Kg-dry	1	11/7/01
ICP METALS		EPA 6010B			Analyst: mal
Antimony	1.16	1.00	mg/Kg	1	11/8/01
Arsenic	3.33	1.00	mg/Kg	1	11/8/01
Beryllium	ND	1.00	mg/Kg	1	11/8/01
Cadmium	ND	1.00	mg/Kg	1	11/8/01
Chromium	17.7	1.00	mg/Kg	1	11/8/01
Copper	12.0	1.00	mg/Kg	1	11/8/01
Lead	10.0	1.00	mg/Kg	1	11/8/01
Nickel	13.2	1.00	mg/Kg	1	11/8/01
Selenium	ND	1.00	mg/Kg	1	11/8/01
Silver	ND	1.00	mg/Kg	1	11/8/01
Thallium	ND	1.00	mg/Kg	1	11/8/01
Zinc	59.4	1.00	mg/Kg	1	11/8/01
ICID SOIL	1	EPA 8015			Analyst: tmh
.Oil	ND	132	mg/Kg	1	11/6/01
Gasoline	ND	26.3	mg/Kg	1	11/6/01
Diesel	ND	65.8	mg/Kg	1	11/6/01
Surr: O-Terphenyl	140.6	50-150	%REC	1	11/6/01
PERCENT MOISTURE		SM 2540			Analyst: smc
% Moisture	24.0	0	wt%	1	11/6/01

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank .

* - Value exceeds Maximum Contaminant Level

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

CLIENT:

Project:

Method Blank QC SUMMARY REPORT 5659-011106/Metro-Civic Drive Hahn and Associates 0111038 Work Order:

Date: 13-Nov-01

Sample ID: MB-3476 Client ID:	Batch 10: 00 HG C-4410 Test Code: EBA 7474A	Total Contract		; ;					
Client ID:	Date: 10. 04.110 3-1110	est code:	EPA 7471A	Units: mg/Kg		Analysis	Analysis Date: 11/7/01	Prep Date: 11/6/01	
	0111038	Run ID:	MERC_011107B	7B		SeqNo:	95724		
Analyte	Result	PQ	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit RPD Ref Val	%RPD RPDLimit	Qual
Mercury	QN	0.1							
Sample ID: MB-3462	Batch ID: 3462	Test Code:	Test Code: EPA 8015	Units: mg/Kg		Analysis	Analysis Date: 11/6/01	Prep Date: 11/6/01	
Client ID:	0111038	Run ID:	BUTTERCUP_011106B	011106B		SeqNo:	95389		
Analyte	Result	PQ	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit RPD Ref Val	%RPD RPDLimit	Qual
Diesel	QN	50							
Gasoline	QN	20							
io	QN	100							
O-Terphenyl	. 115	0	100	0	115.0%	50	150 0		
Sample ID: MB-3472	Batch ID: 3472	Test Code:	Test Code: EPA 6010B	Units: mg/Kg		Analysis	Analysis Date: 11/8/01	Prep Date: 11/8/01	
Client ID:	0111038	Run ID:	ICP_011108C			SeqNo:	95841		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	LowLimit HighLimit RPD Ref Val	%RPD RPDLimit	Qual
Antimony	QN	1							
Arsenic	QN	-							
Beryllium	QN	~				٠			
Cadmium	Q	-							
Chromium	QN	~							. •
Copper	QN	₩	,					-	
Lead	QN	Ψ-							
Nickel	QN .	_							
Selenium	QN	_							
Silver	QN	~							
Thallium	QN	~							
Zinc	QN	~							
Oly Constitution	NIO Mas Detected at the Descriptor I imit		S	C - Child Danniam outside encented renormery limits	ocer betreood	wen, limite	B - Analyte date	B - Anglists detected in the accordated Method Blank	Riant
-	- Not Detected at the Nepotting Limit		ndo-o	se recovery ourside	accepted tech	yery minus	D - Analyte uele	JUNE IN THE ASSOCIATION INTERNITOR	Dialin

Hahn and Associates CLIENT:

0111038 Work Order: 5659-011106/Metro-Civic Drive Project:

Date: 13-Nov-01

QC SUMMARY REPORT

Sample Duplicate

Sample ID: 0111038-02A DUP	Batch ID: 02 HG S-11/0 Test Code:	Test Code	: EPA 7471A	Units: mg/Kg		Analysis	Analysis Date: 11/7/01	01	Prep Da	Prep Date: 11/6/01	
Client ID: 002	0111038	Run ID:	MERC_011107B	78		SeqNo:	95730				
Analyte	Result	PQL	SPK value	SPK value SPK Ref Val	%REC	LowLimit	LowLimit HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Mercury	QN	0.1	0	0	0.0%	0	0	0	0.0%	20	
Sample ID: 0111029-02A DUP	Batch ID: 3462	Test Code:	: EPA 8015	Units: mg/Kg		Analysis	Analysis Date: 11/6/01	9	Prep Da	Prep Date: 11/6/01	
Client ID:	0111038	Run ID:	BUTTERCUP_011106B	_011106B		SeqNo:	95399				
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	LowLimit HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Diesel	Q	67.6	0	0	0.0%	0	0	0	0.0%	20	
Gasoline	ON .	27	0	0	0.0%	0	0	0	0.0%	20	
IŌ	QN	135	0	0	%0.0	0	0	0	0.0%	20	
O-Terphenyi	185.1	0	135	0	137.1%	20	150	0	0.0%	0	
Sample ID: 0111038-02A DUP	Batch ID: 3462	Test Code:	EPA 8015	Units: mg/Kg		Analysis	Analysis Date: 11/6/01	94	Prep Da	Prep Date: 11/6/01	
Client ID: 002	0111038	Run ID:	BUTTERCUP_011106B	_011106B		SeqNo:	95409				
Analyte	Result	PQ	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Diesel	QN	65.8	0	0	0.0%	0	0	0	0.0%	20	
Gasoline	Q	26.3	0	0	0.0%	0	0	0	0.0%	20	
Oil	Q	132	0	0	%0.0	0	0	0	0.0%	20	
O-Terphenyl	152.6	0	132	0	115.6%	20	150	0	0.0%	0	

J - Analyte detected below quantitation limits

QC SUMMARY REPORT

Sample Duplicate

5659-011106/Metro-Civic Drive Hahn and Associates 0111038 Work Order: CLIENT: Project:

Client ID: Odd Fob_Lof11086 Fob_Lof111086 Fob_Lof11086	Sample ID: 0111038-02A DUP	Batch ID: 3472	Test Code:	EPA 6010B	Units: mg/Kg		Analysis	Analysis Date: 11/8/01	31	Prep Da	Prep Date: 11/8/01	
e Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD nny 1.15 1 0 0.0% 0 0 0.0% 0 0.0% 0 0.0% c MD 1 0 0 0 0 0 0.0% 0 0.0% 0 0.0% 0 0.0% 0 0.0% 0 0.0% 0 0.0% 0 0.0% 0 0.0% 0 0.0% 0 0.0% 0 0.0% 0 0.0% 0 0.0% 0 0 0.0% 0 <th>Client ID: 002</th> <th>0111038</th> <th>Run ID:</th> <th>ICP_011108C</th> <th></th> <th></th> <th>SeqNo:</th> <th>95847</th> <th></th> <th>•</th> <th></th> <th></th>	Client ID: 002	0111038	Run ID:	ICP_011108C			SeqNo:	95847		•		
nny 1.15 1 0 0.0% 0 1.16 0.9% am ND 1 0 0.0% 0 0 0.0% 0 0.0% um ND 1 0 0.0% 0 0 0.0% r 17.9 1 0 0.0% 0 0 0.0% r 12.1 1 0 0.0% 0 0 0.0% r 9.06 1 0 0.0% 0 0 0.0% 0 0.0% m ND 1 0 0.0% 0 0 0 0 0 0 0 m ND 1 0 0 0 0 0 0 0 0 0 0 0 m ND 1 0 0 0 0 0 0 0 0 0 0 m ND 1	Analyte	Result	POL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD		Qual
c 3.23 1 0 0.0% 0 0 3.33 3.0% um ND 1 0 0.0% 0 0 0.0% 0 0.0% ium ND 1 0 0 0.0% 0 0 0.0% r 12.1 1 0 0 0.0% 0 1 1.1% r 9.06 1 0 0 0 0.0% 0 0 0.0% 0 0 0.0% 0 0.0% 0	Antimony	1.15	τ	0	0	0.0%	0	0	1.16	0.9%	20	
um ND 1 0 0.0% 0 0 0.0% 0 0 0.0% um ND 1 0 0 0.0% 0 0 0.0% r 17.3 1 0 0 0.0% 0 1 0.0% r 9.06 1 0 0 0.0% 0 0 1 0.9% um ND 1 0 0 0.0% 0 0 0 0 m ND 1 0 0 0.0% 0	Arsenic	3.23	-	0	0	0.0%	0	0	3.33	3.0%	20	
um ND 1 0 0.0% 0 0 0.0% ium 17.9 1 0 0.0% 0 0 17.7 1.1% r 12.1 1 0 0.0% 0 0 12.7 1.1% 9.06 1 0 0 0.0% 0 0 1 0.9% um ND 1 0 0.0% 0 0 0 0 m ND 1 0 0.0% 0 0 0 m ND 1 0 0.0% 0 0 0 58.4 1 0 0 0.0% 0 0 0	Beryllium	Q	•	0	0	0.0%	0	0	0	0.0%	. 20	
ium 17.9 1 0 0.0% 0 17.7 1.1% r 12.1 1 0 0.0% 0 1 2 0.8% 9.06 1 0 0 0.0% 0 0 1 0 0.9% um ND 1 0 0 0.0% 0 0 0 0.0% m ND 1 0 0 0.0% 0 0 0 0 sh 1 0 0 0.0% 0 0 0 0 m 58.4 1 0 0 0 0 0 0	Cadmium	ON	_	0	0	0.0%	0	0	0	0.0%	20	
r 12.1 1 0 0.0% 0 0 12 0.8% 9.06 1 0 0 0.0% 0 10 9.9% 13.5 1 0 0 0.0% 0 0 13.2 2.2% um ND 1 0 0 0.0% 0 0 0 0.0% m ND 1 0 0 0 0 0 0 0 0 58.4 1 0 0 0 0 0 0 0 0	Chromium	17.9	~	0	0	%0.0	0	0	17.7	1.1%	20	
9.06 1 0 0.0% 0 10 9.9% 13.5 1 0 0.0% 0 13.2 2.2% um ND 1 0 0.0% 0 0 0.0% m ND 1 0 0.0% 0 0 0.0% m 58.4 1 0 0 0.0% 0 0 59.4 1.7%	Copper	12.1	-	0	0	0.0%	0	0	12	0.8%	20	
H3.5 1 0 0.0% 0 0.13.2 2.2% ND 1 0 0.0% 0 0.0% ND 1 0 0.0% 0 0.0% M ND 1 0 0.0% 0 0.0% 58.4 1 0 0 0.0% 0 0.59.4 1.7%	Lead	90'6	_	0	0	%0.0	0	0	10	9.9%	20	
um ND 1 0 0.0% 0 0 0 ND 1 0 0.0% 0 0 0 m ND 1 0 0 0 0 0 58.4 1 0 0 0 0 0 59.4 1.7%	Nickel	13.5	_	0	0	0.0%	0	0	13.2	2.2%	20	
MD 1 0 0.0% 0 0 0.0% 0 0.0% 0 0.0% m ND 1 0 0.0% 0 0 0.0% 0 0.0% 0 0.0% 58.4 1 0 0 0.0% 0 0 59.4 1.7%	Selenium	QN	•	0	0	%0.0	0	0	0	0.0%	20	
lum ND 1 0 0.0% 0 0 0.0% 0 0.0% 0 0.0% 1.7%	Silver	QN .	-	0	0	%0.0	0	0	0	0.0%	20	
58.4 1 0 0.0% 0 0.59.4 1.7%	Thallium	Q	_	0	0	0.0%	0	0	0	0.0%	20	
	Zinc	58,4	-		0	0.0%	0	0	59.4	1.7%	20	

J - Analyte detected below quantitation limits ND - Not Detected at the Reporting Limit Qualifiers:

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

2 of 2

B - Analyte detected in the associated Method Blank

Date: 13-Nov-01

Hahn and Associates CLIENT:

Work Order:

Project:

Client ID: 001

Analyte

8

Client ID:

Analyte

Mercury

Mercury

9

Client ID:

Analyte

Antimony

Arsenic

Beryllium Cadmium Chromium

Copper

Selenium

Nickel

Lead

Thallium

Silver

Qual Sample Matrix Spike Qual Qual ≅. S ≅,S **QC SUMMARY REPORT** %RPD RPDLimit **RPDLimit RPDLimit** Prep Date: 11/6/01 Prep Date: 11/6/01 20 Prep Date: 11/8/01 %RPD %RPD 4.8% 0 LowLimit HighLimit RPD Ref Val 1.07 0 0 LowLimit HighLimit RPD Ref Val HighLimit RPD Ref Val Analysis Date: 11/7/01 Analysis Date: 11/7/01 Analysis Date: 11/8/01 95728 95844 95727 125 125 125 125 SeqNo: SeqNo: SeqNo: 22 75 LowLimit 75 75 75 75 75 75 75 75 75 75 %REC %REC %REC 107.0% 102.0% 86.2% 90.0% 87.4% 88.2% 96.0% 85.6% 86.4% 81.8% 89.8% 59.4% 29.8% Units: mg/Kg Sample ID: 0111038-01A MSD Batch ID: 02 HG S-11/0 Test Code: EPA 7471A Units: mg/Kg Units: mg/Kg 3,78-0 0 14.3 15.5 18.1 ೮ SPK value SPK Ref Val 0 SPK value SPK Ref Val SPK Ref Val MERC_011107B MERC_011107B SPK value ICP_011108C Batch ID: 02 HG S-11/0 Test Code: EPA 7471A Test Code: EPA 6010B 50 50 50 50 50 50 50 50 50 집 g 0.1 Р 0.1 Run ID: Run ID: Run ID: 5659-011106/Metro-Civic Drive Result Result 55.8 40.9 1.07 1.02 Result 14.9 46.9 45 43.7 62.2 62.3 58.7 44.9 29.7 0111038 0111038 0111038 Batch ID: 3472 0111038 Sample ID: 0111038-01A MS Sample ID: 0111038-01A MS

J - Analyte detected below quantitation limits ND - Not Detected at the Reporting Limit Qualifiers:

S - Spike Recovery outside accepted recovery limits R - RPD outside accepted recovery limits

79.0%

112

B - Analyte detected in the associated Method Blank

B - Analyte detected in the associated Method Blank

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

J - Analyte detected below quantitation limits

ND - Not Detected at the Reporting Limit

Qualifiers:

Hahn and Associates 0111038 Work Order: CLIENT:

5659-011106/Metro-Civic Drive

Project:

Sample Matrix Spike Duplicate QC SUMMARY REPORT

Qual S,M ⊠ S **RPDLimit** Prep Date: 11/8/01 %RPD 0.0% 0.0% 0.2% 0.5% 3.4% 0.9% 0.2% 1.2% 0.2% 0.3% 46.9 45 43.7 62.2 62.3 55.8 58.7 40.9 44.9 29.7 HighLimit RPD Ref Val Analysis Date: 11/8/01 95845 125 SeqNo: LowLimit 75 75 75 75 75 75 75 75 86.2% %0.06 87.6% 88.8% 91.8% 86.6% 86.6% 82.8% 89.6% 59.2% 79.0% Units: mg/Kg 14.3 15.5 18.1 5 SPK value SPK Ref Val ICP_011108C 50 50 50 50 50 50 50 50 50 Test Code: EPA 6010B PQL Run ID: 46.9 43.8 62.5 56.3 58.8 Result 14.9 5 60.2 41.4 44.8 29.6 0111038 Sample ID: 0111038-01A MSD Batch ID: 3472 Client ID: 001 Chromium Cadmium Antimony Beryllium Selenium Thallium Arsenic Analyte Copper Nickel Silver Lead Zinc

Hahn and Associates CLIENT:

0111038 Work Order:

5659-011106/Metro-Civic Drive Project:

Date: 13-Nov-01

QC SUMMARY REPORT

Laboratory Control Spike - generic

							-			
Sample ID: LCS-3476	Batch ID: 02 HG S-11/0 Test Code: EPA 7471A	Test Code:	EPA 7471A	Units: mg/Kg		Analysis	Analysis Date: 11/7/01	-	Prep Date: 11/6/01	
Client ID:	0111038	Run ID:	MERC_011107B	78		SeqNo:	95725			
Analyte	Result	POL	SPK value	SPK value SPK Ref Val	%REC	LowLimit	HighLimit	LowLimit HighLimit RPD Ref Val	%RPD RPDLimit	Qual
Mercury	.49	0.1	0.5	0	98.0%	80	120	0		
Sample ID: LCS-3472	Batch ID: 3472	Test Code:	Test Code: EPA 6010B	Units: mg/Kg		Analysis	Analysis Date: 11/8/01	_	Prep Date: 11/8/01	
Client ID:	0111038	Run ID:	ICP_011108C			SeqNo:	95842			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	HighLimit RPD Ref Val	%RPD RPDLimit	Qual
Antimony	45.8	۲	20	0	91.6%	80	120	0		
Arsenic	47.4	~	50	0	94.8%	80	120	0		-
Beryllium	47.6	•	50	0	95.2%	80	120	0	-	
Cadmium	47.3	•	50	0	94.6%	80	120	0		
Chromium	47.6	_	20	0	95.2%	80	120	0		
Copper	48.9	_	20	0	97.8%	80	120	0		
Lead	47.1	-	50	0	94.2%	80	120	0		
Nickel	47.4	_	50	0	94.8%	80	120	0		
Selenium	45	-	20	0	%0.06	8	120	0		
Silver	47.2	•	20	0	94.4%	88	120	0		
Thallium	44.3	_	50	0	88.6%	80	120	0		
Zinc	46.4	_	20	0	92.8%	80	120	0		

J - Analyte detected below quantitation limits ND - Not Detected at the Reporting Limit Qualifiers:

S - Spike Recovery outside accepted recovery limits

B - Analyte detected in the associated Method Blank

R - RPD outside accepted recovery limits

Hahn and Associates CLIENT:

0111038 Work Order: 5659-011106/Metro-Civic Drive Project:

QC SUMMARY REPORT

Date: 13-Nov-01

Initial Calibration Verification Standard

Sample ID: ICV	Batch ID: 02 HG S-11/0 Test Code:	Test Code:	EPA 7471A	Units: mg/Kg		Analysis	Analysis Date: 11/7/01	7	Prep D.	Prep Date: 11/6/01	
Client ID;	0111038	Run ID:	MERC_011107B	8 2		SeqNo:	95723			٠	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	LowLimit HighLimit RPD Ref Val	%RPD	RPDLimit	Qual
Mercury	1.02	0.1	-	0	102.0%	06	110	0			
Sample ID: ICVLOW	Batch ID: 3472	Test Code:	EPA 6010B	Units: mg/L		Analysis	Analysis Date: 11/8/01	1	Prep D.	Prep Date: 11/8/01	
Client ID:	0111038	Run ID:	ICP_011108C			SeqNo:	95839				
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	LowLimit HighLimit RPD Ref Val	%RPD	RPDLimit	Qual
Antimony	493	0.005	0.5	0	%9.86	06	110	0			
Arsenic	494	0.005	0.5	0	98.8%	06	110				
Beryllium	.496	0.005	0.5	0	99.2%	06	110	0			
Cadmium	.497	0.005	0.5	0	99.4%	06	. 110	0			
Chromium	.484	0.005	0.5	0	96.8%	6	110	0			
Copper	.489	0.005	0.5	0	97.8%	06	110	0			
Lead	.495	0.005	0.5	0	%0.66	6	110	0			
Nickel	494	0.005	0.5	0	98.8%	8	110	0			
Seleníum	494	0.005	0.5	0	98.8%	8	110	0			
Silver	.502	0.005	0.5	0	100.4%	06	110	0			
Thallium	.496	0.01	0.5	0	99.2%	06	110	0			
Zinc	.487	0.005	0.5	0	97.4%	06	110	0			

ND - Not Detected at the Reporting Limit Qualifiers: J - Analyte detected below quantitation limits

S - Spike Recovery outside accepted recovery limits R - RPD outside accepted recovery limits

B - Analyte detected in the associated Method Blank

Rev. 04/25/00

The RPD between the sample result and duplicate result was greater than 20%. The original result was less than three times

The spike recovery is outside method control limits. See other qualifiers or case narrative. The RPD result is outside method control limits. See other qualifiers or case narrative.

Unable to quantitate surrogate recovery due to sample ditution.

the reporting level, therefore the RPD is not applicable.

ENYIRONMENTAL SERVICES LABORATORY -- GLOSSARY OF FLAGS

Description Qualifier

This sample was analyzed after the holding time had expired. The hydrocarbon pattern in this sample is not typical of gasoline. The hydrocarbon pattern in this sample extends into the gasoline range. The hydrocarbon pattern in this sample extends into the gasoline range. The hydrocarbon pattern in this sample extends into the diesel range. The hydrocarbon pattern in this sample extends into the diesel range. The hydrocarbon pattern in this sample extends into the oil range. The hydrocarbon pattern in this sample extends into the oil range. This malysis was performed on a VOA sample containing leadspace. Analyse defected in the Method Blank above the reporting leadspace. Analyse defected in the Method Blank above the reporting leadspace. The Relative Fercent Difference (RPD) for the primary result and confirmation result was greater than 40%. The higher result was reported. The Relative Fercent Difference (RPD) for the primary result and confirmation. The Relative Fercent Difference (RPD) for the primary result and confirmation. The Matrix Spike/Matrix Spike Duplicate (MSMSD) result was in control validating the batch. The malysis are proverties are not calcuable due to a high amount of analyte in sample. The MS/MSD recoverties are not calcuable due to a high amount of analyte in sample. This indicates a high level of matrix interference affecting the spike or surrogate recovery. Defection Limits are elevated due to sample dilution. See case narrative. Defection Limits are elevated due to sample due to sample endered behaviors surrogate recovery. The RDD result is considered behavior than to the sample confirms an enorthermy surrogate recovery.		រព្រួច. je. ice.	onfirmation result was greater than 40%. The higher	itation limit. It is considered an estimate. ke Duplicate (MS/MSD) result was outside control limits. The Laboratory Control SD) result was in control validating the batch.	the Reporting Level (RL). It is considered an estimate, analyte in sample.	ative. Ie matrix affecting RPD result.
	This sample was analyzed after the holding time had expired. The hydrocarbon pattern in this sample is not typical of gasoline. The hydrocarbon pattern in this sample is not typical of diesel. The hydrocarbon pattern in this sample is not typical of oil.	The hydrocarbon pattern in this sample extends into the diesel rar The hydrocarbon pattern in this sample extends into the oil range. This analysis was performed on a VOA sample containing heads	The Relative Percent Difference (RPD) for the primary result and result was reported. The sample was supplied in an inanmourlate container	This value is above the quantitation limit. It is considered an esting The Matrix Spike/Matrix Spike Duplicate (MS/MSD) result was a Standard/Duplicate (LCS/LCSD) result was in control validating.	The MS/MSD recoveries are not calcuable due to a high amount of This indicates a high amount of This indicates a high level of matrix interference affecting the spite.	Detection Limits are elevated due to sample difution. See case narre Further inspection of the sample confirms a non-homogenous sampl

	Н		AND AS						La	bora	story		01//	038	3		-	СНА	IN OF	CU	JSTODY
] .	434 N		i ronment a Avenue, Sui		_				Lai	h Pro	ject No.	ES		1110	93	8	_	Chain a	of Custody	v No	1
			796-0717											, , , <u> </u>				Onani.	J1 0 4 3 4 0 4 1	y 110.	
Project		ager	Matt	- Mu	لوح		4	Lie	quid	l wit	h Sedim	ent Sam	ple				Samples	Received	at 4C (Yo	r N)	
Project Project		10	Mein	<u>۲</u>	i air	Orive	┨	м.		-	Filtrate se Sampl		_Test Sed	iment	-	_ Test Both			uiners Usec sults (Y or		rN) Yes
Collect			Matt Mudge		- CV-1 C	UNIVE	1	141.0	****		One (which		Test Sep	arately		Shake			suics (1 or ry Fax Res		YES
Samr	ole N	Vumbe	r Prefix:				I N	latr	ix	- T	Τ				es to be l	Performe	<u> </u>				
Dam			-01110	06-										8	1						
¥					vida	1 ¹ ? essany	,			Number of Containers	W TPH-HCIO	전-10	Metak	0						I	
							Soil	Water	Other	Numb		3	0	-					(RUSH	/
Lab ID	S	ample#	: 1	:		Description						>		•			<u> </u>	i	1		Remarks
-C	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	001	11/6/01	1.		est#1	X			2	\geq	<u> </u>	\bowtie	,			<u> </u>	į .	<u> </u>	X	
-04	7 (707	→	15:40	1 Ash	p:+#2	X			2	$\geq \leq$	<u> </u>	><	Ţ	ļ <u>.</u>		<u> </u>	ļ		X	
	1		!		ļ										-	<u> </u>	<u> </u>	ļ	ļ		
	-				 		╄				ļ							-	<u> </u>		
	+		<u> </u>											-				-	1		
<u> </u>	+		<u> </u>		ļ		_	-							ļ	ļ <u>.</u>	 	<u> </u>			·
	+		<u> </u>				-					<u></u>							!		
ļ								\dashv							1.						
	+			ļ				İ						 	ļ <u>-</u>		<u> </u>	<u> </u>		-	
	+			<u> </u>	1			-	\dashv					ļ	<u> </u>	<u> </u>		<u> </u>			
	-						\dashv	\dashv	\dashv						!			<u> </u>	<u> </u>	\vdash	
	-		<u> </u>		ļ			-	\dashv	-									1		<u></u>
	 				<u> </u>		H	\dashv	+	_										\vdash	
	\vdash		<u> </u>	<u> </u>					\dashv	\dashv								<u> </u>	<u> </u>	\vdash	
		-					-	-													
	+			<u>!</u>				-	-					-					<u> </u>		
	 							+	\dashv	\dashv		· 							<u> </u>		
	+		<u> </u>		 		H	1	\dashv	_									<u>. </u>		
							H	+	+					 					<u> </u>	\forall	
							\vdash	\dashv	\dashv	\dashv											
								\dashv	+	_											
,,,	 								\dagger	7	····										
							\dashv	\dashv	\top	\dashv											
				·				+	+	\dashv									<u> </u>	\forall	
							+	\dashv	\dagger												
Religiquisi	héd by	/ 1 .	1		Company	HAHN & ASSO	ic '	I	Date			Time		Received	by	<u>!</u>			Company	<u> </u>	
Kelinquish	hed by	Mu	aje		Company			E	ate			lime		Received	by				Company		
								1			i										