Low Impact Development Technology Sponsored by Filterra

Ecologically Functional Stormwater Management Technology

"Multi-functional site design, streetscapes and architecture that maintains and restores vital terrestrial ecologically processes necessary to protect the ecological integrity of our receiving waters"

"Lower Costs / Lower Impacts / Added Values"

Presented by: Low Impact Development Center

Larry S. Coffman LNSB, LLLP Stormwater Services l.coffman@worrldnet.att.net 301-580-6631

The Low Impact Development Center

Balancing Growth and Environmental Integrity

Advance Stormwater Technology Pilot Projects / Research / Monitoring / Modeling, Manuals / Training / Education

Neil Weinstein, Executive Director – Phone: 301.982.5559 http://www.lowimpactdevelopment.org/

WHY IS LID SO ATTRACTIVE?

- Universally Applicable (Arid, Clays, Karst, Cold, Coastal....)
- Economically Sustainable
- Ecologically Sustainable
- Lower Costs (Construction, Maintenance & Operation)
- Multiple Benefits (air / water / energy / property values)
- Silent on Growth Management
- Ideal for Urban Retrofit (quality and quantity)
- Public Acceptance

Minimization Soil Amendments Open Drainage Rain Gardens Rain Barrels Pollution Prevention

<u>Limitations of Conventional</u>

Stormwater Approaches

- Economics
 - Reduce Infrastructure Maintenance
 - Growing & Aging Infrastructure
- New Objectives (Public Health / Ecological)
 - Source Water / CSO's / Living Resources
 - Regulations
 - NPDES / TMDL's / ESA

Maintenance Burdens

Underground BMPs Problems

- Out of Sight Out of Mind Training Inspection Enforcement
 - Maintenance

Limitations

- Environmental Impacts
- Loss of Space
- Costs
- Safety & Health Issues
- Maintenance Burdens
- Effectiveness ?

Conservation and Impact reduction Alone is Not Enough!

Good Hope Tributary To Paint Branch

Population Estimates

Hydrological Control - Urban Stormwater

storms is also likely to worsen stream impacts!

<u>Limitations of Conventional End-of-Pipe</u> <u>Stormwater Management</u>

• Cumulative hydrodynamic modifications continue to cause degradation of receiving.

• Limited use for urban retrofit.

Natural Conditions

Courtesy May, U of W

Developed Conditions

Courtesy May, U of W

The Problem: Conventional Site Design

Collect Concentrate Convey Centralized Control

Get the water away as fast as possible!

Highly Compacted Soils

Soil Ecosystem Functions

Physical / Chemical / Biological

1. Hydrology

storage / evaporation / recharge / detention

- 2. Storing Cycling Nutrients (bacteria / fungi) phosphorous / nitrogen / carbon
- **3. Water Quality**

filter / buffer / degrade / immobilize detoxify organic and inorganic materials

"Most diverse ecosystem in the world"

Urbanization Causes a Cumulative Loss of Terrestrial Ecological Processes and Functions Vital to the Protection of Aquatic Ecosystems.

· · · ·

Bioretention

- Shallow Ponding 4" to 6"
- Mulch 3"
- Soil Depth 2' 2.5'
- Sandy Top Soil
 - 70% Sand
 - 20% Sandy Loam
 - 10% Compost
- Under Drain System

Selection

Pollutant Removal Bioretention

Systems

• TSS - 95%

- Heavy Metals 99%
- Oil and Grease 95%
- Total Phosphorous 80%
 - Total Nitrogen 40%

• Coliform - 80%

• Treat over 90% of total volume in less than 1% of the urban landscape.

.....

all walles

Bioretention Urban Quantity / Quality Control

Water Quality and Volume Control

Philosophy Principles Practices Process

Low Impact Development Overview

- New Philosophy
 - Maintaining Functional Relationships Between Terrestrial and Aquatic Ecosystems
- New Principles
 - Decentralized / At The Source Control
 - Distributed / Multi-functional / Multi-beneficial
 - Maintain the Water Balance
- Same Engineering Principles at Small Scale
 - Retain / Detain / Filter / Infiltrate / Treat / Prevent / Use
- New Process

Conserve / Minimize / Timing / Integrate Practices / Prevent

"Volume"

"Hydrology as the Organizing Principle"

- Unique Watershed Design
 - Match Initial Abstraction Volume
 - Mimic Water Balance
- Uniform Distribution of Small-scale Controls
- Cumulative Impacts of Multiple Systems – filter / detain / retain / use / recharge / evaporate
- Decentralized / Disconnection
- Multifunctional Multipurpose Landscaping & Architecture
- Prevention

Defining LID Technology

Major Components

- 1. Conservation (Watershed Scale)
- 2. Minimization (Lot Scale)
- **3. Strategic Timing (Watershed and Site Scale)**
- 4. Integrated Management Practices (Site Scale) Retain / Detain / Filter / Recharge / Use
- 5. Pollution Prevention Traditional Approaches

1. Conservation Plans / Regulations

Local Watershed and Conservation Plans

- Forest (Contiguous and Interior Habitat)
- Streams
- Wetlands
- Habitats
- Step Slopes
- **Buffers**
- Critical Areas
- Parks
- Scenic Areas
- Trails
- Shorelines
- Difficult Soils
- Ag Lands
- Minerals

2. Minimize Impacts

- Minimize clearing
- Minimize grading
- Save A and B soils
- Limit lot disturbance
- * Soil Amendments
- Alternative Surfaces
- Reforestation
- Disconnect
- Reduce pipes, curb and gutters
- Reduce impervious surfaces

3. Maintain Time of Concentration

- Open Drainage
- Use green space
- Flatten slopes
- Disperse drainage
- Lengthen flow paths
- Vegetative swales
- Maintain natural flow paths
- Increase distance from streams
- Maximize sheet flow

<u>4. Storage, Detention & Filtration</u> "LID IMPs"

- Uniform Distribution at the Source
 - Open drainage swales
 - Rain Gardens / Bioretention
 - Smaller pipes and culverts
 - Small inlets
 - Depression storage
 - Infiltration
 - Rooftop storage
 - Pipe storage
 - Street storage
 - Rain Water Use
 - Soil Management**

1992 Somerset, Maryland - Rain Gardens First Residential Application

2008 Somerset, Maryland - Rain Gardens

1992 Somerset, Maryland - Rain Gardens First Residential Application

2008 Somerset, Maryland - Rain Gardens

VIEW OF LOT WITH STORAGE AND BIORETENTION

Rain is Resource

Capture & Use

Toilet Flushing Car washing Irrigation Mixing Washing Gardening Recharge

Benefits

Reduce Demand Self-sufficiency Save Money

Capture and Use

Manage Demand

5. Pollution Prevention

30 - 40% Reduction in N&P

Kettering Demonstration Project

- Maintenance
- Proper use, handling and disposal
 - Individuals
 - Lawn / car / hazardous wastes / reporting / recycling
 - Industry
 - Good house keeping / proper disposal / reuse / spills
 - Business
 - Alternative products / Product liability

<u>Burnsville, MN</u> <u>Rainwater Gardens</u>

90% Runoff Reduction

Urban Retrofit

85% Participation

Pre-Construction Runoff Data June 6, 2003

0.50" Rainfall

For more information, contact Barr Engineering Company, 4700 W. 77th St., Suite 200, Minneapolis, MN 55435, (952)832-2600 or (800)632-BARR or Fax (952)832-2601.

Urban Development

200000

Washington D.C.

Potomac River

> Anacostia River

Urban LID Lot Level Control Opportunities

- Roofs
- Buildings
- Down Spouts
- Yards
- Sidewalks
- Parking Lots
- Landscape Areas
- Open space
- Amended Soils

Multifunctional Infrastructure Retention Detention Filtration Infiltration Timing Water Use **Prevention**

Downspouts Disconnect / Water Use

Navy Yard Rain Garden

Buckman Heights Apartments – Infiltration garden

430

H

H

Rain Garden with turf grass alongside a parking lot in a highly urbanized area with an overflow device in the background.

Porous Pavement / Surfaces

Low Flow

Bioretention

High Flow

Bioretention

TAN Navy Yard Tree Box

Disconnection

Capture

Use

Decentralized Stormwater Controls in Urban Retrofit Streetscape

LID Practices (No Limit!)

"Creative Techniques to Treat, Use, Store, Retain, Detain and Recharge"

- Bioretention / Rain Gardens
- Strategic Grading
- Site Finger Printing
- Resource Conservation
- Flatter Wider Swales
- Flatter Slopes
- Long Flow Paths
- Tree / Shrub Depression
- Turf Depression
- Landscape Island Storage
- Rooftop Detention /Retention
- Roof Leader Disconnection
- Parking Lot / Street Storage
- Smaller Culverts, Pipes & Inlets
- Amended soils
- Alternative materials

- Tree Box Filters
- Alternative Impervious Surfaces
- Reduce Impervious Surface
- Surface Roughness Technology
- Rain Barrels / Cisterns / Water Use
- Catch Basins / Seepage Pits
- Sidewalk Storage
- Vegetative Swales, Buffers & Strips
- Infiltration Swales & Trenches
- Eliminate Curb and Gutter
- Shoulder Vegetation
- Maximize Sheet flow
- Maintain Drainage Patterns
- Green Roofs
- Reforestation
- Pollution Prevention.....

Runoff Use

Possibilities & Opportunities

Perspectives on Implementing **Low-Impact Developments since 1998** Waukesha, Wisconsin

Use native species in restoring open spaces and in lot bioretetnion landscaping

© Applied Ecological Services, Inc.

Home and Lot Sales

Conventional

Village of Jackson Lot Size: 7,000 – 8,000 ft² Price: low-mid <u>\$40,000</u>

Low Impact

Prairie Meadows Lot Size: 7,000 – 8,000 ft² Price: mid-high <u>\$50,000</u>

<u>Advantages of LID Over</u> <u>Conventional Design</u>

Added Value of LID Results in: Lot Premiums Increased Sales Velocity Increased Sales Volume Reduced Debt Service Reduced Infrastructure Costs

Lessons Learned Nature Sells!

Biggest Obstacles to LID

Local Ordinances and **Knowledge / Experience** of **Local Building Officials** 8 **Consultants!**

Celebrate Virginia North Low Impact Development Design Scenario Calculations

Site:	Chick-Fil-A -	Doc Stone		
Example #: Site Classification Total Site Area (ac.) Total Site Area (s.f.) Site Open Space (s.f.) % Open Space Site Imperviousness (s.f.) Building Area (s.f.) Non-Bldg Impervious Area (s.f.)	5 Restaurant 1.2237 44,304 9,154 20.7% 35,150 4,211 30,939	*to face of curb - does not include internal roac		
	IMP#1	IMP#2	IMP#3	IMP#4
Non-Bldg Area Draining to IMP (s.f.) Non-Bldg Impervious Draining to IMP (s.f.) 1XWQV (cu.ft.) 2XWQV (cu.ft.) IMP Treatment Area (s.f.) Required Depth (1xWQV) (in.) Required Depth (2xWQV) (in.)	16,150 14,858 619 1,238 616 12.1 24.1	10,600 9,540 398 795 560 8.5 17.0	875 150 6 13 150 0.5 1.0	875 150 6 13 150 0.5 1.0
Building Area Draining to IMP (s.f.) Required Depth (1xWQV) (in.) Required Depth (2xWQV) (in.)	0 12.1 24.1	0 8.5 17.0	2,105 7.5 15.0	2,105 7.5 15.0
Total IMP Area (s.f.) Total Imperviousness Treated (s.f.) % Site Treated % Imperviousness Treated % Parking/Loading Area Treated	1,326 28,908 73.8% 82.2% 92.1%			
Cost Reductions	Oversity	l lait	Linit Coot	Cost
Curb Storm Piping Roof Drain Piping Inlets Stormceptor Subtotal	40 0 0 1	I.f. I.f. I.f. ea. ea.	\$13.50 \$25.00 \$12.50 \$1,200.00 \$12,000.00	\$540.00 \$0.00 \$0.00 \$0.00 \$0.00 \$12,000.00 \$12,540.00
Cost Additions	Quantity	Lipit	Linit Cost	Cost
Curb Curb Blocks Storm Piping Inlets Underdrains Soil Mulch Vegetation Subtotal	0 20 0 50 123 1,326	l.f. ea. l.f. ea. l.f. c.y. c.y. s.f.	\$13.50 \$40.00 \$25.00 \$800.00 \$12.50 \$25.00 \$25.00 \$1.75	\$0.00 \$0.00 \$500.00 \$625.00 \$3,069.44 \$331.50 \$2,320.50 \$6,846.44
Net Cost Difference Increased Property Area (ac.) Land Cost Net Change in Parking Spaces	-3			(<mark>\$5,693.56)</mark> 0 \$0.00

LID Case Study: The Madera Subdivision

Glenn Acomb, ASLA Department of Landscape Architecture Program for Resource Efficient Communities University of Florida

April 5, 2007

Sustainable Design Techniques for the Lot: Design Techniques of the Model

- Limited clearing of site
- Limited turf (35% of conventional)
- Limited irrigation (50%); low-volume design
- Limited impervious cover (encouraged) Pervious pavers for driveway & sidewalk and shared driveway for some lots
- Zero discharge of stormwater Capture of 1/3 roof stormwater to an infiltration tank; water garden in front yard natural area
- Use of natives and "Florida Friendly" plants; SJRWMD & Florida Yards & Neighborhood support
- Retained snags in rear yard buffer
- Model home displays an array of green products

Madera Model Center Landscape Design

Madera Model Center

Shared driveway and pavers

Model front yard

Permeable pavers

Native plant information

Turf reinforcing in spare parking areas

Benefits...

- Surface Temperature Reduces surface temperature around buildings.
- Permeable Surface Permits surface water filtration / drainage.
- No Surface Drains Required
 e.g. concrete pits, grated trench
 drains.
- High Load Bearing 148.58 t /m² Unconfined.
- Recharges Water Table Replenishes water supply to landscaped areas.
- Easy to Install
- Rigid Clipping System Unique easy to use interlocking system.

Turf Cell[®] grass reinforcement structure allows horizontal & vertical root growth.

Eco-Stone pervious pavers in driveway

Madera Site Details

Roof stormwater infiltration tank under spare parking

Madera Model Center

Front yard and Shumard Oak

Model side yard

Rain Garden

Water conservation information

Madera Home 2005

Front-loading garage; very limited turf; extensive mulch; rain garden

Comparison with Conventional: Site Design Techniques for the Lot

Capital Costs:	(2003/2004 dollars)			
Task	Sustainable	Conventional	Sustainable Savings	
Clearing/Grading	\$1,612.00	\$2,016.00	\$400.00	
Utility Connection	same	same	0	
Natural Area Mulch	\$245.00	\$90.00	(\$155.00)	
Landscape Area Mulch	\$665.00	\$406.00	(\$259.00)	
Landscaping	\$6,485.00	\$6,485.00		
Turf	\$720.00	\$2,331.00	\$1,611.00	
Irrigation	\$1,275.00	\$1,500.00	\$225.00	
Driveway*	\$6,084.00	\$7,584.00	varies with material	
Infiltration Tank	\$1,032.00	0	(\$1,032.00)	
Turf Reinforcing for Parking	<u>\$845.00</u>	<u>0</u>	(\$845.00)	
SUB TOTAL	\$18,963.00	\$20,412.00	*	

* Note:

The driveway, if not shared, would cause an advantage of \$5,294 in favor of the Conventional. If so, only in the maintenance per annum can the costs be recovered (in less than 3 years). Also, there should also be an adjustment of capital cost of the project-wide stormwater savings of reduced pond size due to the zero discharge at the lot (approx. \$1,000 saved per lot).

Comparison with Conventional: Site Design Techniques for the Lot

Maintenance Costs:

(annual costs, 2003/2004 dollars)

<u>Task</u>	Sustainable	Conventional	Sustainable Savings
Landscape service (incl. mowing) Pesticide applications by service Irrigation	\$1,470.00 \$200.00 (IPM)) \$71.84 [<u>31,602 gal.]</u>	\$3,150.00 \$300.00 \$167.51 [<u>74,120 gal.]</u>	\$1,680.00 \$100.00 \$115.67
SUB TOTAL	\$1,721.84	\$3,617.51	\$1,895.67

Result: The approach to the maintenance considers 42 landscape maintenance visits to the residential site and 5 visits for application of pesticide. Also there would be increased maintenance of the project-wide stormwater pond due to the greater depth of pond and greater accumulation of silt, debris and noxious plants in the bottom.